Graded geometry and Poisson reduction
نویسندگان
چکیده
The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result.
منابع مشابه
Elastic Behavior of Functionally Graded Two Tangled Circles Chamber
This paper presents the numerical elastic solution for a real problem, functionally graded chamber of hydraulic gear pumps under internal pressure. Because of the similarity and complexity for the considering geometry, a bipolar cylindrical coordinate system is used to extract the governing equations. The material properties are considered to vary along the two tangled circles with a power-law ...
متن کاملA Supergeometric Approach to Poisson Reduction
This work introduces a unified approach to the reduction of Poisson manifolds using their description by graded symplectic manifolds. This yields a generalization of the classical Poisson reduction by distributions and allows one to construct actions of strict Lie 2-groups and to describe the corresponding reductions.
متن کاملAbstract Submitted for the DFD10 Meeting of The American Physical Society A Poisson-Boltzmann solver on Non-Graded Adaptive Grid with Robin boundary conditions on Irregular Domains
Submitted for the DFD10 Meeting of The American Physical Society A Poisson-Boltzmann solver on Non-Graded Adaptive Grid with Robin boundary conditions on Irregular Domains ASDIS HELGADOTTIR, FREDERIC GIBOU, UCSB — We introduce a second-order solver for the PoissonBoltzmann equation in arbitrary geometry in two and three spatial dimensions. The Poisson-Boltzmann equation can be used to represent...
متن کاملIntroduction to supergeometry
These notes are based on a series of lectures given by the first author at the school of ‘Poisson 2010’, held at IMPA, Rio de Janeiro. They contain an exposition of the theory of superand graded manifolds, cohomological vector fields, graded symplectic structures, reduction and the AKSZ-formalism.
متن کاملReduction of Dirac Structures and the Hamilton–pontryagin Principle
This paper develops a reduction theory for Dirac structures that includes in a unified way, reduction of both Lagrangian and Hamiltonian systems. It includes the reduction of variational principles and in particular, the Hamilton–Pontryagin variational principle. It also includes reduction theory for implicit Lagrangian systems that could be degenerate and have constraints. In this paper we foc...
متن کامل