Graded geometry and Poisson reduction

نویسندگان

  • A. S. Cattaneo
  • M. Zambon
چکیده

The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elastic Behavior of Functionally Graded Two Tangled Circles Chamber

This paper presents the numerical elastic solution for a real problem, functionally graded chamber of hydraulic gear pumps under internal pressure. Because of the similarity and complexity for the considering geometry, a bipolar cylindrical coordinate system is used to extract the governing equations. The material properties are considered to vary along the two tangled circles with a power-law ...

متن کامل

A Supergeometric Approach to Poisson Reduction

This work introduces a unified approach to the reduction of Poisson manifolds using their description by graded symplectic manifolds. This yields a generalization of the classical Poisson reduction by distributions and allows one to construct actions of strict Lie 2-groups and to describe the corresponding reductions.

متن کامل

Abstract Submitted for the DFD10 Meeting of The American Physical Society A Poisson-Boltzmann solver on Non-Graded Adaptive Grid with Robin boundary conditions on Irregular Domains

Submitted for the DFD10 Meeting of The American Physical Society A Poisson-Boltzmann solver on Non-Graded Adaptive Grid with Robin boundary conditions on Irregular Domains ASDIS HELGADOTTIR, FREDERIC GIBOU, UCSB — We introduce a second-order solver for the PoissonBoltzmann equation in arbitrary geometry in two and three spatial dimensions. The Poisson-Boltzmann equation can be used to represent...

متن کامل

Introduction to supergeometry

These notes are based on a series of lectures given by the first author at the school of ‘Poisson 2010’, held at IMPA, Rio de Janeiro. They contain an exposition of the theory of superand graded manifolds, cohomological vector fields, graded symplectic structures, reduction and the AKSZ-formalism.

متن کامل

Reduction of Dirac Structures and the Hamilton–pontryagin Principle

This paper develops a reduction theory for Dirac structures that includes in a unified way, reduction of both Lagrangian and Hamiltonian systems. It includes the reduction of variational principles and in particular, the Hamilton–Pontryagin variational principle. It also includes reduction theory for implicit Lagrangian systems that could be degenerate and have constraints. In this paper we foc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008